
 Read-type Routines
Answers from internal ptrs

Oct 12, 1990

A data request made to a local station is “compiled” into an array of internal ptrs.
These ptrs are interpreted by “read-type” routines according to the listype(s)
used in the request. The read-type routine is called to process an array of internal
ptrs that correspond to the array of idents in the original data request and
produce the corresponding answers. Because an array of internal ptrs is passed to
the routine, it is optimized in speed; its logic does the same processing for each
element of the array.

As new listypes are added to the system, the support often requires new read-
type routines. In the spirit of the named downloaded programs that are used
with local applications, this note considers the implementation of named
downloaded read-type routines.

Current branch table
The current scheme for selecting the read-type routine involves a table of two-

byte offsets to the code (to provide for position independence) for each read-type
routine. The read-type# from the listype table is the table index.

As the system grows—the current size is 53K—the use of two-byte offsets may
appear limiting, so 4-byte offsets could be used. System changes currently
underway will concentrate the knowledge of this branch table into a single
routine called READTYPE, whose single argument is the read-type#, so such a
change would be simple.

New selection scheme

The new branch table has 4-byte offsets for each resident routine but 4-
character names for each downloadable routine. The read-type branch table is
scanned. Each offset entry is converted to a ptr to the resident code, and each
name entry is converted to a ptr to the executable copy using entries (of type
RTYP) found in the CODES table. (For each RTYP entry found, the download copy
is sum-checked and copied into a newly-allocated “executable” memory block.)
The ptr to the read-type routine is stored in a ram-based table used by
READTYPE. There is no provision for replacing or adding a read-type routine
without going through the initialization logic at reset time.


